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diffraction fringes in the diffracted or forward-scattering 
beams (26). Such experiments are realizable, probably 
using an Authier collimator and synchrotron-radiation 
impulses. A high-quality homogeneous AW is necessary 
for the success of such experiments. 

We used boundary conditions (3). What can we expect 
when T -  (2n + 1)2s/2, n = 1,2 . . . .  ? The suppression 
/z s will not be as strong as before because this value is 
defined by the probability of scattering at the layer 
thickness 2s/2, P "~ q2 [(15)] instead of P _~ q4 [(19)]. 

What can we say about lz s dependence on the AW 
frequency? We have found W 0 [(15)] using direct 
numerical solution of the Takagi-Taupin equations for 
the layer thickness 2s/2 and momentum q = 0. The 
results of the numerical solution of the TT equations with 
AW amplitude W = W 0 and thickness of crystal 
T = 5001am are presented in Fig. 6. Low-frequency 
AWs lead to a small suppression of the diffracted beam 
(Fig. 6a). Strong suppression of the diffracted beam is 
realized for the case of high-frequency ultrasound 
(k s >> Ak0) when Jo(4HW) " 0, that is H W  "~ 0.6003, 
1.375 . . . .  (Jo is the Bessel function). High-frequency 
AWs strongly increase /x s for our schematic model 
(r = 115, T = 500~tm) with suppression of the dif- 
fracted-beam intensity; tts _~ 5 x 104 (!) when 2 s = 
101.tm. The smoothing curve of the intensity of the 
diffracted beam (Fig. 6b) is well approximated as 

I h ~ 2.8 X lO-5(ftO/AO)o) 22 (28) 

when 166)/Atg01 < 3. Therefore, high-frequency ultra- 
sonic AWs (2 s = l0  Jam) and probably hypersound also 
lead to the strong and rapid suppression of the intensity 
of the diffracted beam outside the center of the 
diffraction pattern. This effect can be explained by the 
coefficients C "" 1/k~ 2-3 (18) when 2 s < r. Therefore, 
suppression o f / z  s is large and exists in a wide angular 
interval of the incident beam. The crystal (T = 500 I.tm) 
is effectively divided ihto many thin layers (2 s = 10 ~tm). 

The amplitude of scattering is very small in each of these 
thin layers. 

It is likely that the rapid and deep suppression and 
oscillation of the intensity of the diffracted beam induced 
by ultrasound or hypersound could be used, in principle, 
for shielding electronic apparatus from the short power- 
ful impulses of highly collimated monochromatic SR 
beams. The shielding from SR impulses is discussed in 
experiments with SR excitation of MOssbauer nuclei. 
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interesting discussions and to Dr L. Sedlakova, J. Saroun, 
P. Strunz, B. Michalkova and J. Vavra for their great 
technical assistance. I am especially grateful to L. 
Rusevich and Dr A. Muromtsev for the creation of the 
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Abstract 

The symmetry of the similarity of the surface step 
structure in zinc blende (sphalerite) type structures is 
investigated by studying the crystal planes that are 
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parallel to the [01 i] axis. The symmetry transformations 
of the similar plane pairs are derived. Plane sets (111) 
and (311) are the planes of symmetry. The similarity of 
the surface step structure exists among three sets of 
planes. The surface geometric characteristics of similar 
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planes are discussed. The result can be applied to explain 
dual epitaxy and optimize the interface quality by 
designing dual epitaxy in the heteroepitaxy. 

1. Introduction 

It has been found that the growth of CdTe on (100), (211) 
and (311) GaAs by molecular-beam epitaxy or metal- 
organic vapor-phase epitaxy can result in dual epitaxy, 
i.e. the occurrence of (100) or (111) CdTe on (100) GaAs 
(Nishitani, Ohkata & Murotani, 1983), (211) or (133) 
CdTe on (211) GaAs (Lange et al., 1991) and (011) or 
(311) CdTe on (311) GaAs (Smith, Byrne, Patel, 
Knowles & Thompson, 1990). 

The occurrence of dual epitaxy depends on many 
factors, such as the surface reconstruction, which is 
related to the preparation of the substrate surface (Otsuka 
et al., 1985; Ponce, Anderson & Ballingall, 1986; 
Cohen-Solar, Bailly & Barbe, 1986; Feldman & Austin, 
1986; Ortner & Bauer, 1988), the twin operation 
(Cinader & Raizman, 1992), the stacking sequence of 
the wurtzite-type structure on the GaAs surface (Naka- 
mura, Otsuka, Lange, Sporker & Faurie, 1992) and 
kinetics, which relates to the substrate temperature. 

In this paper, we focus on the geometric symmetry of 
similarity of the zinc blende structure and then use the 
conclusion to explain the three kinds of dual epitaxy 
mentioned above and to design new dual epitaxy for 
reducing interfacial mismatch. 

2. The symmetry of similarity of the surface step 
structure 

Fig_ 1 is the projection of the zinc blende structure in the 
[011] direction. Each lattice point with Miller indices 
denotes a crystal plane that goes through the origin and 
this lattice point. The distance from this lattice point to 
the origin is the periodic unit length of the projection of 
this crystal plane, which is given by 

O(hka) = ½(½h 2 + kZ)'/2a, (1) 

where a is the lattice constant. 
In this paper, for convenience and because we are only 

interested in the surface structure of crystal planes, let 
any set of planes be represented by the lowest group of 
Miller indices h, k (l -- k) that satisfies h -t- k = even. For 
instance, (100), (200), (300) . . . .  are represented by 
(200); (011), (022), (033) . . . .  by (022); (111), (222), 
(333) . . . .  by (111); (211), (422), (633) . . . .  by (422). 

It is seen in Fig. 1, on both sides of the (111) or (311) 
plane, that there are two series of paired planes. The two 
crystal planes of each pair have a similar surface step 
structure within every unit length and are symmetri- 
cal about (111) or (311). For example, (133)/(422), 
(022)/(311) and (244)/(533) plane pairs are symmetri- 
cal about (111) but (111)/(200), (422)/(511) and 
(533)/(711) plane pairs are symmetrical about (311). 
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The surface step structures of these planes are shown in 
Fig. 2. 

Let (hlk~k~)/(h2kzk2) be a pair of crystal planes that 
have similar surface step structure and are symmetrical 

4a ~ . i l k  ( 2 8 8 )  ,,,0,. ~ 6 8 8 )  ~ I .  

0 
I ! i ! i 

0 ,'2~,'?. ,. 2 3. f2a/2 2 v ~ a  5.,/2a/2 

Fig. 1. The projection of the zinc-blende-structure crystal in the [01 i] 
orientation. Each lattice point with Miller indices denotes a crystal 
plane that goes through the origin and this lattice point (some of them 
are marked with dashed-dotted lines). The spacing between the 
planes of single-line-represented bonds and dashed-line-represented 
bonds is (21/2/4)a. 

t ,  s (133)  8 ( 2 4 4 )  

(422)  ( 5 3 3 )  

(511)  (711)  

(022) (200) 4 , 

(311)  (111)  

Fig. 2. The surface steps of some planes. 
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about plane (111), then the two planes must satisfy the 
following transformation relation: 

h i = 1 
kl) ½(--1 31) ( : : ) )  

-, 
k 2 ) : l (  1 3 l ki ) • 

(2) 

This is a reversible transformation. 
For a pair of planes that have similar surface step 

structure and are symmetrical about plane (311), there is 
a transformation relation: 

h i = 1 3 
kl ) 1(1 __l)(  h2 

k 2 ) '  (3) 
k2 ) : l ( l  3 ) (h i  . ) 

1 - 1  ki i 

It is also a reversible transformation. 
The reversibility of both the transformations suggests 

that the symmetry about planes (111) and (311) is true. 
It is an 'obl ique 'symmetry,  in w h_ich plane (311) reflects 
points along (111) and plane (111) reflects points along 
(311). In Figs. 4 and 5, this character is clearly visible. 

Making a more detailed examination of the direction 
of the steps and the polarity of dangling bonds on the 
surface, we modify the similarity transformation relations 
into the following form: 

equation (2) to 

hi k,) 
: ( ,  

k2 1 -1  

- 1  k 2 ) '  

-1 k I ); 

(4) 

equation (3) to 

( l  
ki __ 1 - 1  

,2) 1 

3 _,)(h2 
k 2 ) '  

')(::)_, 
(5) 

Transformation (4) is the inverse transformation of (5) 
and they are revolving transformations. If we start from 
h I , k I and operate with transformation (4), we obtain the 
following cycle: 

(hi, k l ) - -  
1 2 

(4) 
1 2 

(4) 
1 2 

(4) 

~ [ - l ( h  I - 3 k , ) , - ½ ( h  1 --t- k l )  ] 

- -  ~ [ -  ½(h, + 3k,), ½(h, - k,)] 

)(hi, kl). 

This cycle goes through three crystal planes. This means 

that a similarity between the surface step structures exists 
among the three crystal planes. 

In addition, it can be demonstrated that the indices h, k 
of one of the three similar crystal planes are even 
numbers and the h, k of the other two planes are odd 
numbers. 

But for symmetry planes (111) and (311), there are 
only two independent planes in each of their similar 
planes groups, i.e. (111)/(200) and (311)/(022) plane 
pairs. 

As an exam.pie,the interfacial atomic arrangements of 
the group (133), (511) and (422) are shown in Fig. 3. 

The symmetry around (111) and (311) planes 
described here is not covered in the normal crystal 
symmetry. It can be seen in Fig. 1 that, if the unit lengths 
of (111) and (200) planes are equal, the symmetry around 
(111) and (311) planes would be the same as the 
symmetry around (200) and (022) planes but in fact the 
symmetry around (111) and (311) planes is oblique or 
similar. 

3. The  characterist ics  of  the surface  s tructure  of  
s imilar plane pairs 

A. The number of dangling bonds on the crystal surface 

The numbers of dangling bond projections in the [01 i] 
orientation (see Fig. 1) within the unit-cell length D(hka) 
of a crystal surface, which is denoted by npo, are listed in 
Fig. 4. On the two sides of an atomic plane, the values of 
npb a r e  usually different; both numbers for each plane are 
given in Fig. 4. However, if h is a multiple of four or 
zero, the spacings between adjacent atomic planes are 

', ~ ', p-- i0rT] ® - 

~ - ' - - - ' ! , - -  - - ~ - ' - - -  - v - -  - - - ~ - - - - _  _ . _ _ .  

Fig. 3. The planar inteffaoial atomic arrangements of planes group 
(1:3:3), (511) and (422). 
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even and the values of npb a r e  the same on both sides of 
each atomic plane. The dashed lines in Fig. 4 indicate the 
positions of symmetry planes (111) and (311). In order to 
reflect the symmetry visually, the values of npb are only 
written for the planes for which the similar pair is also 
present in Fig. 4 and which are symmetrical about (311) 
and (111). 

It can be seen from Fig. 4 that, for every similar plane 
pair, there is always a pair of surfaces with the same 
value of npb. This is not always true for similar plane 
pairs with higher Miller indices. 

The numbers of dangling bonds within the unit-cell 
area of crystal surface D ( h k a ) ( 2 1 / 2 / 2 ) a ,  which are de- 
noted by n b, are listed in Fig. 5. It can be seen in _Fig. 5 
that, for the planes located between (211) and (211) or 
the planes for which the index h is a multiple of four or 
zero, the values of n b on both sides of each atomic plane 
are the same; for the other planes, the difference between 
the values of n b on both sides of each atomic plane is 
t w o .  

Comparing the values of n b of each plane with that of 
its similar pair, we find that one of . . . . .  the values of n b o f  a 
plane located between (311) and (111) or (311) and (111) 
is always greater than one of the values of rib_Of 

its similar pair located between (il 1) and (311) or (111) 
and (311). 

B. Surface charge 

The net charge number of an ideal surface is 
determined by the product of the valency charge number 
and the difference between the numbers of dangling 

h 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9  
k 

8 9 
8 i%~ 10 

9 ~7 8 7 
7 10 14, 9 8 

8 ~,6 7 6 
6 8 12~ 7 8 

7 6 ~ 5 5 
5 8 7 510' 6 6 

6 4 4 

6 5 4 ~3 3 5 6 
3 9 6 5 8 ,  2 4 6 . - "  9 

6 4 3 2 
2 6 6 3 t ,  2 

6 5 3 2 ~. 6 
1 7 6 4 3 2~ 2 .''3 4 6 7 

4 3 2 1 ~.'~ i 2 3 4 
0 8 6 4 2 .'^~ 2 4 6 8 

6 5 3 2.'" 1 ~ 2 3 5 6 
i 7 6 4..'~ 2 2, 3 4 6 7 

6 ~." 3 2 2 ,,2 3 4 6 
6..'6 3 ( 2 & 3 6 6 

6-" 5 4 3 3 3 ~ 4 5 6 
9 6 5 6 4 4 ~ 5 6 9 

5 4 4 4 4 ',4 5 6 
i 6 8 s 4 s k 6 6 

5 5 5 5 ~ 6 7 
6 6 6 6 10~ 7 8 

6 , 8 
g 6 8 7 8 

7 8 ~J 9 
8 9 x4~ xo 

9 8 
3.0 X6 

Fig. 4. The numbers of  the projection of  dangling bonds in the [011] 
orientation within unit-length cell D ( h k a )  of a crystal surface 
dependent on Miller indices h, k. _Th_e oblique dashed lines mark 
the positions of symmetry planes (111) and (311). 

6 
6 

5 5 
6 6 

4 4 5 
5 8 6 

3 3 4 
4 6 5 

2 3 4-" 6 
4 3.-'6 6 

i ~-'3 5 

bonds of anions and cations. Let nnb denote the difference 
b e t w e e n  the number s  o f  dang l ing  bonds  o f  anions  and 
cations within the surface unit-cell area D(hka)(21/2/2)a 
(simply called 'net bond number), then we find that: 

when h = 4m (m is an arbitrary integer including 
zero), n,b -- O, i.e. the surface is nonpolar; 

when h = 4m + 2, n,b = 4-2; 
when h = 4m 4- 1 (i.e. odd number), n,b = 4-1 or 4-3 

for the surfaces on the two sides of an atomic plane, 
respectively. 

Obviously, the general trend is that the higher the 
Miller indices h, k of the surface, i.e. the longer the unit 
length of the surface D(hka), the lower the density of the 
surface charge, i.e. the weaker the polarity of the surface. 

C. The ratio of  the unit lengths of  each pair of  surfaces 

Let us introduce the ratio R of the unit length of a 
surface (h2k2k2) to that of its similar pair (hlklkl), 

R - D(h2k2a)/D(h I kla). (6) 

For simplicity, suppose the two planes are related by the 
transformation (3). The polar diagram of the value of R 
versus the azimuth of plane (hiklkl) is plotted in Fig. 6. 
The radial dimension indicates the value of R. The 
azimuth of plane (hlklk 1) is given by the reference axes 
h, k as in Fig. 1. 

For the elliptical curve, the following properties can be 
proved: 

(a) The curve itself is symmetrical about the bisectors 
of the angles between (i  11) and (311 ) or (311 ) and (111 ). 
The two bisectors are perpendicular to each other and 
they are a pair of similar 'planes' symmetrical about 
(311). The planes are imaginary because the ratios of the 

h ' 9 8 7 6 5 4 3 2 1 0 1 2 3 4 ~ 6 7 8 9  
kl 

8 i0 
8 2~ 12 

xl '7 9 7 
7 13 21~ Ii 9 

i0 ~ 8 6 6 
6 i0 l~x 8 i0 6 

9 7 ~5 5 5 5 5 
5 11 9 i~ 7 7 7 7 

8 6 ~ 4 4 4 4 6 
4 8 8 I~ 6 4 6 12 8 

9 7 5 ~ 3 3 3 5 7 9 
3 9 7 7 9~ 5 5 9 7 7.'" 9 

8 6 4 ~ 2 2 4 6"" 8 
2 8 6 4 ~ 2 6 4..''6 8 

9 7 5 3 ~ 1 3." 5 7 9 
i 9 7 5 3 ~, 3.."3 5 7 9 

8 6 4 2 ~." 2 4 6 8 
0 8 6 4 2.-" ~ 2 4 6 8 

9 7 5 ~-" 1 x~ 3 5 7 9 
9 7 5.-'3 3 ~ 3 5 7 9 

8 6"" 4 2 2 ~ 4 6 8 
8.''6 4 6 2 ~ 4 6 8 

9'' 7 5 3 3 3 ~ 5 7 9 
9 7 7 9 5 5 9~ 7 7 9 

6 4 4 4 4 ~ 6 8 -- 
4 8 12 6 4 6 i~ 8 8 

5 5 5 5 ~5 7 9 
7 7 7 7 1~ 9 11 

6 6 8 ~ 10 
6 10 8 18 10 

7 9 ~7 11 
9 x l  2 i ,  x3 

10  8 
12 24 

Fig. 5. Dependence of the numbers of surface dangling bonds with unit- 
cell area (21/2/2)a on Miller indices h, k. 
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Miller indices h/k of the two planes are ½(-5 + 33 ~/2) 
and ½ ( - 5  - 331/2), respectively. 

(b) The maximum ratio Rma x is on the bisector of the 
angle between ( i l  1) and (311) [h/k  = ½(-5 + 331/2)], 
Rma x - -  1.192. The minimum ratio Rmi n is on the bisector 
of the angle included between (311) and (111) [h/k  = 
½(-5 - 331/2)], Rmi n -- 0.8387. ema x × Rmi n : 1. 
_ (c) Tl2_e values o f  R for the symmetrical planes (311), 

(111), (311), (111) are unity. The values of R_for the 
pl_anes located between (111) and (311) or (111) and 
(311) are greater than unity. The values of R for the 
planes located between (311) and (111) or (311) and 
(111) are less than unity. 

4. Dual epitaxy 

Epitaxy is defined as the oriented crystalline growth of a 
material on another crystalline material. The overlayer 
always copies the structure and orientation of the 
substrate in homoepitaxy. In the case of heteroepitaxy, 
however, the mismatch of the lattice makes the interface 
incoherent. In low-mismatch heteroepitaxy, the inter° 
facial strain is relaxed by dislocation or misorientation 
epitaxy. In high-mismatch heteroepitaxy; except the two 
ways mentioned above, the dual epitaxy will occur under 
suitable growth condition to relax the mismatch. 

\ 4" 
\ \  

\ 3; \ 
\ ,, 
÷~\ 2" 

"\, i o l ~ ? j /  
\ , / 

• I . /  / "  

/ 

_~ \ 
3" \ .  G, 

. /  
. /  

Fig. 6. Polar diagram of the ratio (R) of the unit length of surface 
(h2k2k 2) to that of its similar pair (hlk I k 1) versus the azimuth of plane 
(h 1 k I k 1). The azimuth of plane (h 1 k I k I ) is determined referred to axes 
h, k. The value of R is measured in radial dimensions. For the cases 
that (hlklkl) is (311), (Sii), ( l ib  or (ill), R = I. 

In dual epitaxy, the orientation of the overlayer is 
different from that of the substrate and is not tilted by a 
small angle with respect to the substrate as in the case of 
misorientation epitaxy. But the orientation of the over- 
layer is not arbitrary. Since the overlayer is single 
crystalline, the adoption of the orientation of the 
overlayer should make the interface between overlayer 
and substrate a step join. The symmetry of the similarity 
of the surface step structure in zinc blende structure 
makes this possible. In fact, all three kinds of dual 
epitaxy phenomena that have been observed so far, 
(111)/(100), (133)/(211), (011)/(311), occurred in 
accordance with the rule of the symmetry of similarity. 
First, the three pairs of planes are similar plane pairs. 
Second, as shown in the HRTEM images of the 
interfaces of ( l l l )CdTe/(100)GaAs (Ponce et al., 
1986; Otsuka et al., 1985) and (133)CdTe/(211)GaAs 
(Nakamura et al_., 1992), along the direction perpen- 
dicular to the [011] axis the interfacial atomic structure is 
characterized by a unit length - by unit-length matching 
(i.e. by a step join) across the interface. Therefore, the 
symmetry of similarity of the surface step structure in the 
zinc blende structure is a basic factor in the occurrence of 
dual epitaxy. 

It can be imagined that the dual epitaxy may occur 
between other similar plane pairs given by the symmetry 
of similarity, more precisely, given by transformation (4) 
or (5). The fact that the similarity of the surface step 
structure exists among three planes suggests that three- 
orientation epitaxy (not only dual epitaxy) may occur 
under suitable conditions. 

The occurrence of dual epitaxy always contributes to 
the reduction of interfacial mismatch. But the reduction 
of mismatch is only achieved in one dimension, which is 
perpendicular to the [011] axis. The interfacial mismatch 
on this dimension is measured by the difference of unit 
length D(hka).  When dual epitaxy occurs, the absolute 
value of the unit-length mismatch will certainly be lower 
than that of the lattice-parameter mismatch: 

(a I - a2) /a  i < [D(hEk2a2) - D ( h l k l a l ) ] / D ( h l k l a l )  

< ( a E - a l ) / a l '  a2 > al '  (7) 

where 1 and 2 denote the substrate and thin-film 
overlayer, respectively. From the definition of D(hka)  
given above, we obtain 

D(hikiai) = D(hik ia)(ai /a  ), (8) 

where i denotes an arbitrary crystal plane. Thus, 
inequality (7) can be simplified to 

O(hEkEa) 
2 a l / a  2 - 1 < ~ < 1, a 2 > a 1. (9) 

D(h lk la )  

It is evident that the ratio of the lattice parameters of 
the two materials conditions the orientation of the 
overlayer. 
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All of the three kinds of dual epitaxy mentioned 
above conform to inequality (9). For the CdTe over- 
layer on GaAs, 2aGaAs/aCdTe-- 1 =0 .7446  and 
D(1 la) /D(2Oa) = 0.8660, D(13a) /D(42a)  = 0.8898; 
D(O2a)/D(31a)  = 0.8528. 

If D(h2k2a2) = D(hlk la l ) ,  i.e. 

al  R - -  D ( h 2 k 2 a )  - -  a l  Rmi n _< - -  _< Rmax,  ( 1 0 )  
D(h lk la  ) a 2 ' a 2 

is satisfied, the lattice mismatch in one dimension is 
relaxed completely. Since the curve R in Fig. 6 is 
symmetrical, there are two pairs of planes that satisfy 
condition (10). 

5. Discussion on the application of  dual epitaxy 

New dual epitaxy can be designed to optimize the 
interfacial quality in heteroepitaxy by applying the 
knowledge of similar plane pairs. However, some new 
contradictions will arise as old ones are resolved. 

A. Interfacial mismatch 

The reduction of interfacial mismatch is the main 
advantage of dual epitaxy. Thus, dual epitaxy can be 
utilized to reduce the interfacial mismatch. For this 
purpose, we can look for the optimal plane pair as the 
planes of the substrate and the epilayer using inequality 
(9), equation (10) and Fig. 6. Although (10) is the ideal 
condition for the reduction of mismatch, it is usually not 
a favourable condition for other factors that play an 
important role in the occurrence of dual epitaxy or the 
quality of the interface. In particular, for two materials 
for which the lattice mismatch is excessively high, i.e. 
a l / a  2 > 1.192 o r  a l / a  2 < 0.8387, (10) is in contra- 
diction with inequality (9). Thus, we should look for the 
optimum pair of planes within the angle included 
between the two pairs of planes with R = 1 and 
R -- 2 a l / a  2 - 1 (R = 1.192 when a l / a  2 > 1.192; 
R = 0.8387 when a l / a  2 < 0.8387), respectively, and 
nearer to the pair of planes with R = a I /a  2 (R = 1.192 
when a l / a  2 > 1.192; R = 0.8387 when a l / a  2 < 0.8387) 
in Fig. 6. 

B. Interfacial net charge 

For the parallel heteroepitaxy between group IV 
diamond structure and IH-V or II-VI zinc-blende- 
structure materials or between III-V and II-VI zinc- 
blende-structure materials, the ideal planar geometry is 
only allowed for the nonpolar planes. In the case of polar 
heteroepitaxy, charge will accumulate at the interface. 
This is harmful to the quality of the interface. Farrell et 
al. (1991) described an approach of achieving the 
balance of net charge at the growth interface between 
II-VI and HI-V materials, which is based on the design 
of surface reconstruction. 

For the case of dual epitaxy, the balance of the net 
charge at the interface with ideal planar geometry can be 
achieved not only for the nonpolar planes but also for 
some polar planes. 

In the case of dual epitaxy between group IV diamond- 
structure and III-V or II-VI zinc-blende-structure 
materials, since the surface of group IV materials is 
always nonpolar, the balance of the interfacial net charge 
with ideal planar geometry can be achieved only for the 
nonpolar planes of the zinc-blende-structure materials. 
As mentioned above, the planes with index h = 4m (m is 
an integer) are nonpolar. 

In the case of dual epitaxy between group III-V and 
II-VI zinc-blende-structure materials, the planes of the 
substrate and the overlayer cannot be nonpolar simul- 
taneously because the indices h of a pair of similar planes 
cannot be even numbers simultaneously. However, the 
balance of the net charge at an interface with ideal planar 
geometry can be achieved for certain pairs of planes. 

For diamond- and zinc-blende-structure crystals, the 
nonpolar surface is characterized by the fact that each 
dangling bond contains one electron on average. 
Similarly, if each dangling bond of two crystal surfaces 
contains one electron on average, the heteroepitaxic 
interface between the two crystal surfaces will achieve 
the balance of net charge. Let nbiii, nbV, nbl I and nbV I 
denote the numbers of dangling bonds of group III, V, II 
and VI atoms within the unit cell of the surface, 
respectively. Since each dangling bond of the group III, 
V, II or VI atom on the surface of the zinc-blende- 
structure crystal contains 3, ~, ~ or 6 electrons, respec- 
tively, the balance condition of the net charge at the dual 
epitaxic interface of group III-V and II-VI materials can 
be written in the form 

6 
3 nbll  I _~_ 4 5_ nb v + 2 nbii + "4 nbVi = nbii  I + n b  V + nbli  + nbVl" 

(11) 

Remembering the definitions of 'net bond number', at 
the epitaxic interface, 

nnblll_ V = nbll l  - -  nbV , 

nnbVi_l I --- nbV I --  /lbi I, 
(12) 

and putting (12) in (11), we obtain 

n.biii_v = 2nnbvi_i i .  ( 1 3 )  

Since the admissible values of n.b are O, + 1, 4-2 and 4-3, 
the solution is 

n,a,m-v = -t-2, 
(14) 

nnbv i_ i i  --" "4-1. 

Thus, the plane of group III-V material should be the one 
with index h I = 4m~ + 2 (m I is an integer) and the plane 
of group II-VI material should be the one with index 
h E = 4 m  2 4- 1 (m 2 is an integer). 
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For the dual epitaxic interface between the same group 
zinc-blende-structure materials, remembering that there 
is only one plane with even Miller indices h within the 
three planes of a similar group, we should select odd 
numbers for the indices h of beth substrate and overlayer. 

In general, the charge density of the surface introduced 
by dangling bonds decreases as the Miller indices of the 
surface increases and thus adopting the planes with high 
Miller indices for epitaxy can decrease the interfacial 
charge density to a certain value. 

C. Meeting of bonds at interface 

For a pair of similar planes, equality of the number of 
projections of dangling bonds within unit length of the 
two surfaces ensures some coherency between the 
overlayer and substrate and thus aids the occurrence of 
dual epitaxy. However, the numbers of dangling bonds 
n b within the unit-cell area of the two ideal surfaces are 
usually unequal and this is an unfavourable factor for the 
occurrence of dual epitaxy and the quality of the 
interface. However, reconstruction of the real surface of 
the substrate usually results in dimerization between two 
dangling bonds and thus reduces the number of dangling 
bonds on the surface. So the incident atoms can be placed 
in the correct positions to lead to dual epitaxy. 

For this reason, dual epitaxy only occurs on certain 
reconstructed surfaces. Surface reconstruction plays an 
important role in the occurrence of dual epitaxy, as has 
been shown in many experiments. 

As mentioned above, one of__the values of nb of a plane 
located between (311) and (111) or (311) and (111) in 
Fig. 1 or Fig. 6 is always greater than one of the values of 
nbof its similar pair located between (i 11) and (311) or 
(111) and (311). Thus, within a pair of similar surfaces, 
the one located between (311) and (111) or (311) and 
(111) is suitable for the role of substrate in dual epitaxy. 
Since the ratio of the surface unit length R corresponding 
to each plane (hlk~kl) located within this zone is less 
than one, the dual epitaxy is more liable to occur in the 
case that the lattice parameter of the overlayer is longer 
than that of substrate. The effect of surface tension also 
leads to the same result. 

D. Optimum surface step structure 

It can be seen in Fig. 1 that, on a surface with odd 
Miller indices h, k, the surface atomic arrangement 
with_in any unit length has a displacement (2~/2/4)a in the 
[011] direction from that within its adjacent unit length; 
the real unit length is 2D(hka). Thus, for the case that the 
Miller indices of the substrate and the epilayer are odd 
and even, respectively, the epitaxic growth on an ideal 
planar surface of the substrate will result in a twin 
boundary between adjacent unit lengths [D(hka)]. In fact, 
no experiment has shown such a result and real surfaces 
are usually non-ideally planar. 

Studying Fig. 1, we find that a tooth-like interface will 
avoid the problem. The width of such a tooth is 2D(hka); 
the two oblique planes of each tooth are (111) or (200) 
planes at obtuse angles with the plane of the substrate 
and are terminated with anions and cations, respectively. 
Thus, the interfaces of different dual epitaxies will be 
included in the interface of (111)/(200) or the combina- 
tions of (111)/(200) and (111)/(111). In particular, at the 
interface between (111) and (200) planes, one oblique 
plane of the tooth disappears, thus the interface is a real 

_ _  

plane. As an example, the tooth-like interfaces of (133), 
(422) and (511) are shown in Fig. 7. 

On such tooth-like surfaces, the conclusions about the 
symmetry of similarity of the surface step structure, the 
surface dangling-bond density and the surface charge 
density (or 'net bond' density) still hold good. Thus, such 
a tooth-like dual epitaxic interface can avoid all the 
geometrical and electrical troubles mentioned above. The 
remaining problem is the energy-dependent and experi- 
mental possibility of realizing such a tooth-like surface. 

6. Concluding remarks 

In summary, the symmetry of similarity in zinc-blende- 
(or diamond-) structure crystals brought about harmo- 
nious relations of surface step structure and the density 
and arrangement of surface dangling bonds between 
different planes; this is the intrinsic factor of the 

• " ~ - , - ^ ^  F ,~ I  I j  

o,_ ( k_ ,, . . . .  ~ ~ / - ~  ~k, r -  , , _ 

~--~" ,,~-~ ~ 

Fig. 7. The tooth-l ike interfaces of  (133), (511) and (4:22). 
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occurrence of dual epitaxy. The reduction in interfacial 
mismatch introduced by dual epitaxy promotes the 
occurrence of dual epitaxy. In dual epitaxy, the factors 
that impair the quality of interface and epilayer, such as 
interfacial mismatch, interfacial net charge and some 
twins, can be remitted or avoided by adopting suitable 
planes of substrate and epilayer and appropriate surface 
reconstruction. Of course, the achievement of an ideal 
dual epitaxy depends on growth conditions and surface 
reconstruction and therefore on energy in the final 
analysis, which includes surface energy, interfacial 
energy, and kinetic and thermodynamic energies. 

The author sincerely thanks Dr A. Y. Cho and 
Mr S. D. Chen for their suggestions and Mr J. J. Yuan, 
Ms H. Lin, Ms F. Li, Mr J. Li and Mr Y. S. Luo for their 
assistance. 

References 

CINADER, G. & RAIZMAN, A. (1992). J. Appl. Phys. 71, 2202-2205. 
COHEN-SOLAR, G., BAILEY, F. & BARBE, M. (1986). Appl. Phys. Lett. 

49, 1519-1521. 
FARRELL, H. H., TAMARGO, M. C., DE MIGUEL, J. L., TURCO, F. S., 

HWANG, D. M. & NAHORY, R. E. (1991). J. Appl. Phys. 69, 
7021-7028. 

FELDMAN, R. D. & AUSTIN, R. F. (1986). Appl. Phys. Lett. 49, 954-956. 
LANGE, M. D., SPORKEN, R., MAHAVADI, K. K., FAURIE, J. P., 

NAKAMURA, Y. 8z OTSUKA, N. (1991). Appl. Phys. Lett. 58, 
1988-1990. 

NAKAMURA, Y., OTSUKA, N., LANGE, M. D., SPORKER, R. & FAURIE, 
J. P. (1992). Appl. Phys. Lett. 60, 1372-1374. 

N1SHITANI, K., OHKATA, R. • MUROTANI, Z. (1983). J. Electron Mater. 
12, 619-635. 

ORTNER, B. ~: BAUER, G. (1988). J. Cryst. Growth, 92, 69-76. 
OTSUKA, N., KOLODZIEJSKI, L. A., GUNSHOR, R. L., DATrA, S., 

BICKNELL, R. N. & SCHETZINA, J. F. (1985). Appl. Phys. Lett. 46, 
860-862. 

PONCE, F. A., ANDERSON, G. B. 8/: BALLINGALL, J. M. (1986). Surf. Sci. 
168, 564-570. 

SMITH, L. M., BYRNE, C. F., PATEL, D., KNOWLES, P. & THOMPSON, J. 
(1990). J. Vac. Sci. Technol, AS, 1078-1085. 

Acta  Cryst .  (1995). A51, 909-916 

Crystal Space Analysis by means of Voronoi-Dirichlet Polyhedra 

BY V. A. BLATOV, A. P. SHEVCHENKO AND V. N. SEREZHKIN 

Samara  State  Universi ty ,  Ac.  Pav lov  St. 1, 443011 Samara ,  Russ ia  

(Received 20 January 1995; accepted 22 May 1995) 

Abstract 

The method of analysis of crystal space topology by 
means of Voronoi-Dirichlet tessellation is described. The 
possibilities of using Voronoi-Dirichlet polyhedra in the 
investigation of local and global geometrical/topological 
properties of the crystal lattice in structures of simple and 
complex substances are discussed. Examples of the 
application of the proposed method in crystal-chemical 
analysis are given. 

1. Introduction 

At present, geometrical analysis of crystal structure is 
one of the fundamental methods that are used by crystal 
chemists in solid-state investigation. Within this ap- 
proach, the continuous crystal space is replaced by the 
discrete (pointal) space, and geometrical properties of a 
set of points, symbolizing centres of gravity of maxima 
of electron density or structural units (atoms or atomic 
groups), are analysed. This set, otherwise known as the 
multiregular system (MRS), is a set of N regular systems 
of points (where N is a number of crystallographically 

independent structural units) and a special type of 
Delauney system (Galiulin, 1984). The crystal space is 
usually considered as space R 3 in which the MRS is 
embedded (space M3), or as space M 3 in each point of 
which the function of electronic density p(x, y, z) is 
determined, and positive integer Z i, which is equal to the 
charge of a corresponding atom, is compared with each 
point Pi of the MRS (space p3). 

According to numerous investigations, the geometri- 
cal/topological properties of a MRS are connected with 
the energy characteristics of a crystal. In crystal 
chemistry analysis, however, very little attention is paia 
to topological properties of a MRS and M 3 as a rule. 
Although such terms as 'topology of a coordination 
polyhedron' or 'topology of a complex group' are 
commonly used, they do not usually assume the 
performance of a comprehensive analysis of topological 
properties of the discussed objects. A theoretical 
foundation for the topological part of geometrical 
crystallography has been carded out by a number of 
authors (particularly Galiulin, 1984; Wells, 1977; 
Pearson, 1972; Engel, 1986), but the methods of 
mathematical analysis of M 3 topology features are far 
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